Deposition and age of Chicxulub impact spherules on Gorgonilla Island, Colombia

Paula Mateo1,2, Gerta Keller3, Thierry Adatte3, André M. Bitchong4,5, Jorge E. Spangenberg6, Torsten Vennemann6, and Christopher J. Hollis7

1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
2Department of Geosciences, Princeton University, Princeton, New Jersey 08544, USA
3Institute of Geology and Paleontology, University of Lausanne, Lausanne 1015, Switzerland
4Department of Earth Sciences, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
5Department of Petroleum and Gas Exploration, Institute of Mines and Petroleum Industries, University of Maroua, Kaele, Cameroon
6Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Lausanne 1015, Switzerland
7GNS Science, Lower Hutt, 5040, New Zealand

ABSTRACT

The end-Cretaceous mass extinction (66 Ma) has long been associated with the Chicxulub impact on the Yucatan Peninsula. However, consensus on the age of this impact has remained controversial because of differing interpretations on the stratigraphic position of Chicxulub impact spherules relative to the mass extinction horizon. One side argues that the impact occurred precisely at the Cretaceous-Paleogene boundary, thus coinciding with the mass extinction; the other side argues that the impact predated the Cretaceous-Paleogene boundary, based on the discovery of primary impact spherules deposits in NE Mexico and Texas near the base of planktic foraminifer zone CF1, dated at 170 k.y. before the Cretaceous-Paleogene boundary. A recent study of the most pristine Chicxulub impact spherules discovered on Gorgonilla Island, Colombia, suggested that they represent a primary impact deposit with an absolute age indistinguishable from the Cretaceous-Paleogene boundary. Here, we report on the Gorgonilla section with the main objective of evaluating the nature of deposition and age of the spherule-rich layer relative to the Cretaceous-Paleogene boundary.

The Gorgonilla section consists of light gray-yellow calcareous siliceous mudstones (pelagic deposits) alternating with dark olive-brown litharenites (turbidites). A 3-cm-thick dark olive-green spherule-rich layer overlies an erosional surface separating Maastrichtian and Danian sediments. This layer consists of a clast-supported, normally graded litharenite, with abundant Chicxulub impact glass spherules, lithics (mostly volcanic), and Maastrichtian as well as Danian microfossils, which transitions to a calcareous mudstone as particle size decreases. Mineralogical analysis shows that this layer is dominated by phyllosilicates, similar to the litharenites (turbidites) that characterize the section. Based on these results, the spherule-rich layer is interpreted as a reworked early Danian deposit associated with turbiditic currents. A major hiatus (>250 k.y.) spanning the Cretaceous-Paleogene boundary and the earliest Danian is recorded at the base of the spherule-rich layer, based on planktic foraminiferal and radiolarian biostratigraphy and carbon stable isotopes. Erosion across the Cretaceous-Paleogene boundary has been recorded worldwide and is generally attributed to rapid climate changes, enhanced bottom-water circulation during global cooling, sea-level fluctuations, and/or intensified tectonic activity. Chicxulub impact spherules are commonly reworked and redeposited into younger sediments overlying a Cretaceous-Paleogene boundary hiatus of variable extent in the Caribbean, Central America, and North Atlantic, while primary deposits are rare and only known from NE Mexico and Texas. Because of their reworked nature, Gorgonilla spherules provide no stratigraphic evidence from which the timing of the impact can be inferred.

INTRODUCTION

The end-Cretaceous mass extinction (66 Ma) is one of the five major biotic crises in Earth’s history, and since 1980, it has been attributed to a meteorite impact (Alvarez et al., 1980) related to the impact crater (Chicxulub) discovered on the Yucatan Peninsula (Hildebrand et al., 1991; review in Schulte et al., 2010). Ever since the discovery of the Chicxulub crater, impact spherules at or near the Cretaceous-Paleogene boundary have become major players in solving the age of the impact relative to the mass extinction based on their stratigraphic positions. However, consensus on the age of the Chicxulub impact has remained controversial, primarily because of differing interpretations regarding these impact deposits, with one side arguing that the impact occurred precisely at the Cretaceous-Paleogene boundary, thus coinciding with the mass extinction (review in Schulte et al., 2010), and the other side arguing that the impact predated the Cretaceous-Paleogene boundary (Keller et al., 2004a, 2009a; review in Keller, 2011).

The discovery of the Cretaceous-Paleogene boundary mass extinction in planktic foraminifera between major Deccan eruptions in India (Keller et al., 2011a, 2012) and recent studies pointing to Deccan volcanism as an important contributor to environmental stress across the Cretaceous-Paleogene boundary (e.g., Font et al., 2016; Keller et al., 2016; Punekar et al., 2014a; Schoene et al., 2015, 2019) have revived the mass extinction debate challenging a Cretaceous-Paleogene boundary role for the Chicxulub impact.

When did the Chicxulub impact occur relative to the Cretaceous-Paleogene boundary? What was its contribution to the Cretaceous-Paleogene boundary mass extinction? To answer these questions, the study of impact deposits that can be evaluated both stratigraphically (i.e., relative...
timing of events) and geochronologically (i.e., absolute age of the impact) is imperative.

A recent study of the most pristine Chicxulub impact spherules discovered on Gorgonilla Island, Colombia, suggested that they represent a primary impact deposit with an absolute age indistinguishable from the Cretaceous-Paleogene boundary, based on 40Ar/39Ar dating (Renne et al., 2018). Here, we report on the Gorgonilla section with the main objective of evaluating the nature of deposition and age of the spherule-rich layer relative to the Cretaceous-Paleogene boundary. Methods included: (1) lithological analysis to assess the sedimentary processes that deposited the spherule-rich layer, (2) planktic foraminiferal and radiolarian biostratigraphy to estimate the relative age of this deposit, (3) bulk-rock carbon and oxygen stable isotope analyses to evaluate environmental changes and continuity of sediment deposition, and (4) bulk-rock mineralogy to assess sediment sources.

MATERIALS AND METHODS

Gorgonilla Island (2°56′N, 78°12′W) is located in the eastern Pacific Ocean 50 km west of the coast of Colombia (Fig. 1). Along with Gorgonilla Island, Gorgonilla is considered to have been formed in the Late Cretaceous (ca. 90 Ma; Kerr and Tarney, 2005; Storey et al., 1991) in association with the Caribbean large igneous province in an oceanic slab window setting (Serrano et al., 2011). These islands represent the last fragment of the Caribbean large igneous province accreted to northern South America in the Eocene (Kerr and Tarney, 2005; Kennan and Pindell, 2009). Mafic and ultramafic rocks (e.g., basalts, gabbrons, peridotites) and pyroclastic deposits outcrop along their coasts.

Paleomagnetic studies indicate that the islands were originally formed at a paleolatitude of 26°S (Estrada and MacDonald, 1994), and, by the time of the Chicxulub impact, they were located ~3000 km southwest of the impact site (Bermúdez et al., 2016).

The Cretaceous–Paleogene section outcrops on the beach on the southwest coast of Gorgonilla Island as a sequence of pelagic sedimentary beds intercalated with turbiditic deposits (Fig. 2A). A thin spherule-rich layer interpreted to be the Chicxulub impact deposit separates Cretaceous and Paleogene sediments (Bermúdez et al., 2016).

In total, 103 samples were collected every 20 cm, on average, from 15.6 m below the Cretaceous–Paleogene boundary to 6.3 m above it. At least one sample was collected from each bed in this sedimentary sequence, and the Cretaceous–Paleogene transition was sampled at a higher resolution.

The oxygen isotope composition (18O, 16O) of glass spherules was measured at the University of Lausanne, Switzerland, using a method similar to that described in Vennemann et al. (2001). Between 0.5 and 2 mg aliquots of a sample were loaded onto a small Pt-sample holder and pumped out to a vacuum of ~10⁻⁶ mbar. After preflourination of the sample chamber overnight, the samples were heated with a CO₂ laser in 50 mbar of pure F₂. Excess F₂ was separated from the O₂ produced by conversion to Cl₂ using KCl held at 150 °C. The extracted O₂ was collected on a molecular sieve (5A) and expanded into the inlet of a Finnigan MAT 253 isotope ratio mass spectrometer. Oxygen isotope ratios are given in the standard δ notation, expressed relative to Vienna standard mean ocean water (VSMOW) in per mil (‰). Replicate oxygen isotope analyses of the standard NBS-28 quartz ($n = 3$) had a precision of ±0.1‰ for δ¹⁸O. The accuracy of δ¹⁸O values was better than 0.2‰, compared to accepted δ¹⁸O values for NBS-28 of 9.64‰.

Oxygen and carbon isotope analyses of carbonates were performed on bulk rock at the University of Lausanne, Switzerland, using a Thermo Fisher Scientific GasBench II connected to a Thermo Fisher Scientific Delta Plus XL mass spectrometer, in continuous He-flow mode, following the procedure described in Spötl and Vennemann (2003). Isotope compositions are given in the standard δ notation, expressed relative to Vienna Pee Dee belemnite (VPDB) in per mil (‰). Analytical uncertainty (2σ) monitored by replicate analyses of the international calcite standard NBS-19 (δ¹³C = +1.95‰, δ¹⁸O = −2.20‰) and the laboratory standard Carrara Marble (δ¹³C = +2.05‰, δ¹⁸O = −1.70‰) was better than ±0.05‰ for δ¹³C and ±0.1‰ for δ¹⁸O values. The corresponding data table is available as supplementary material (Table DR1).

Bulk-rock mineralogy was determined by X-ray diffraction (XRD; Xtra ARL Diffracometer) at the University of Lausanne, Switzerland, based on procedures described by Kübler (1987) and Adatte et al. (1996). The semiquantification of whole-rock mineralogy was based on XRD patterns of random powder samples (~800 mg aliquots of each rock powder were pressed in a powder holder, covered with a blotting paper, and analyzed by XRD) by using external standardization.

Figure 1. Location of the Cretaceous–Paleogene (K/P) section and Chicxulub impact spherules on Gorgonilla Island, Colombia.
Reworked Chicxulub impact spherules in a marine sequence

H. I. Maastrichtian

G

Fig. 2. Cretaceous–Paleogene (K/P) outcrops on Gorgonilla Island, Colombia. (A) Cretaceous–Paleogene sequence consists of pelagic sedimentary beds (light gray-yellow calcareous mudstones) alternating with turbiditic deposits (dark olive-brown litharenites). (B) Syn- and postdepositional faulting and folding were observed over the entire sequence from the late Maastrichtian to the early Danian. (C, D) Overlying an erosional surface, a dark olive-green, normally graded, spherule-rich layer separates Maastrichtian and Danian sediments (photo credit: Hermann Bermúdez). (E) Minor syndepositional slumping and postdepositional faulting led to the triplication of the spherule-rich layer at one edge of the outcrop. (F, G) Normal gradation and sorting and (H) irregular bases generally characterize the turbiditic deposits. (I) Some turbidites in the late Maastrichtian section show poorly sorted, structureless sediments above an erosional surface indicating higher dynamic conditions.

RESULTS

Lithology

At Gorgonilla, the Cretaceous–Paleogene section consists of light gray-yellow calcareous siliceous mudstones alternating with dark olive-brown litharenites (Fig. 2A). Deposition occurred in a lower bathyal slope environment at or below the lysocline, as inferred by the absence of bioturbation, presence of bathyal benthic foraminifera (e.g., *Nuttallides truempyi*), and poor preservation of planktic foraminifera. The entire sequence from the late Maastrichtian to the early Danian is strongly disturbed by syn- and postdepositional faulting and folding (Fig. 2B). Nevertheless, individual beds are well exposed and can be followed over several meters. A 3-cm-thick dark olive-green spherule-rich layer overlies an erosional surface separating Maastrichtian and Danian sediments (Figs. 2C and 2D). No major disturbances are recognized in the spherule-rich layer apart from syndepositional slumping and minor postdepositional faults that led to the layer triplication at one edge of the outcrop (Fig. 2E).

The light gray-yellow calcareous siliceous mudstones are mainly composed of planktic foraminifers, nannofossils, and radiolarians. These beds are typical pelagic deposits representing normal marine sedimentation (i.e., suspended material that was floating in the open ocean and has settled on the seafloor; Nichols, 2009).

The dark olive-brown litharenites are mainly composed of volcanic lithics (glass-rich) and plagioclase with calcite cement. Foraminifers, nannofossils, and radiolarians are also present. Common normal gradation and sorting (Figs. 2F and 2G), irregular bases (Fig. 2H), lack of upper-flow regime sedimentary structures, and grain size no larger than sand indicate deposition during the last stages of a typical turbidite at the distal end (i.e., deposition by waning flow energy and ultimately settling from suspension as the flow comes to rest; Bouma, 1962). A few beds in the late Maastrichtian show poorly sorted, structureless sediments above an erosional surface (Fig. 2I) interpreted as turbidite deposits with higher dynamic conditions (Bouma, 1962). Turbidites composed of volcanic material are very common in marine...
environments proximal to volcanic provinces, such as Gorgonilla (Nichols, 2009).

The spherule-rich layer overlying the erosional surface has a clast-supported sedimentary fabric with normal gradation (Figs. 3A–3D). This litharenite contains abundant glass spherules, lithics (mostly volcanic; Figs. 3E–3H), and microfossils (Figs. 3I and 3J), and it transitions to a calcareous mudstone as particle size decreases (Fig. 3D). These characteristics are interpreted as deposition by waning turbidity flow, similar to the litharenites described above. An erosional base generally develops by the scouring action of the turbidity current on the usually finer deposits over which the current flows (Reineck and Singh, 1980). Turbidites also typically show a clast-supported sedimentary fabric as the coarser material transported by saltation and rolling is deposited while the finer material transported by suspension is washed away until dynamic conditions decrease (Reineck and Singh, 1980). Normal gradation refers to a distribution grading where coarse sediments (e.g., spherules, lithics, and larger-sized planktic foraminifera at Gorgonilla; Fig. 3B) progressively grade into finer sediments from the bottom to the top of a bed, and it can also be the result of deposition by turbidity currents (Reineck and Singh, 1980; Nichols, 2009).

Origin of the Gorgonilla Spherules

The Gorgonilla spherules are dark olive to light brown in color, mostly round (rarely oval, teardrop, and dumbbell morphologies), with a maximum diameter of 1.3 mm at the base of the layer (Figs. 3A–3C). Most of the spherules (70%–90%) consist of unaltered glass (massive or with vesicles filled with calcite), and common alteration products include smectites, calcite, and zeolites (Bermúdez et al., 2016).

Glass spherules are formed through high-temperature processes associated with volcanic eruptions (e.g., Carracedo Sánchez et al., 2010; Walker and Croasdale, 1971) and meteorite impacts (e.g., Glass and Simonson, 2012; Smit, 1999). Volcanic spherules usually derive from lava fountains of low-viscosity basaltic magmas and are commonly found in ash deposits (e.g., Heiken, 1974; Melson et al., 1988; Vallier et al., 1977). When a large extraterrestrial body hits Earth, a plume of melted and vaporized rocks is ejected into the atmosphere, forming glass spherules upon cooling (solidified from melt, condensed from vapor). It then falls back to Earth’s surface, where it may accumulate as a spherule layer (Glass and Simonson, 2012).

Because Gorgonilla Island sediments are rich in volcanic material, CO$_2$ laser ablation analysis of the oxygen isotope compositions of the glass spherules was used to test whether these spherules could be volcanic in origin. The δ18O results of individual spherules showed a wide range of values from +8.5‰ to +10.4‰. Local basalt, if unaltered, is expected to have δ18O values of about +6‰. However, if the glasses are somewhat altered, higher values are commonly measured for glasses of basaltic compositions (e.g., Eiler, 2001; Vennemann et al., 2001). If volcanic in origin, δ18O values suggest a typical andesite-dacite (+8‰) rhyolitic glass (+9‰ to +10‰) composition. Hence the spherules could be (1) volcanic in origin with the glass altered during post depositional processes (e.g., Vennemann et al., 2001), or (2) the result of volcanic melts contaminated by sedimentary material prior to eruption, or (3) impact melt ejecta of mixed basaltic-sedimentary material. The large range in values would, however, support either variable amounts of postdepositional alteration or variable proportions of basaltic-sedimentary material.

Major-element geochemistry showed that the Gorgonilla spherules are mainly composed of SiO$_2$ (46.43%–68.15%), Al$_2$O$_3$ (8.69%–15.85%), and CaO (5.45%–30.26%), with FeO (4.43%–5.85%), MgO (1.90%–4.84%), K$_2$O (0.28%–1.87%), Na$_2$O (0.97%–4.00%), and TiO$_2$ (0.42%–0.68%) as minor components (Fig. 4; Bermúdez et al., 2016). Comparing these results with the composition of known Chicxulub impact deposits, Gorgonilla spherules are similar to black and yellow (high-Ca) glass spherules found in Beloc, Haiti (Koeberl and Sigurdsson, 1992), and Mimbral, NE Mexico (Smit et al., 1992), thus confirming an impact origin. Some overlap is also observed with Fe-rich spherules at Demerara Rise, tropical western North Atlantic (Schulte et al., 2009), whereas K-rich spherules at Mimbral (Smit et al., 1992), smectite spherules at Demerara (Schulte et al., 2009), Fe- and K-rich spherules at La Sierrita, NE Mexico (Schulte et al., 2003), and smectite and chlorite spherules at Brazos River, Texas (Schulte et al., 2006), are very different (Fig. 4). These differences between Gorgonilla and some Chicxulub impact spherule deposits are associated with the degree of glass

![Figure 3. (A–J) Spherule-rich layer separating Maastrichtian and Danian sediments at the Gorgonilla section, Colombia. This deposit consists of a clast-supported, normally graded litharenite (A–D) with abundant glass spherules, lithics (mostly volcanic) (E–H), and microfossils (large Cretaceous planktic foraminifera) (I, J), which transitions to a calcareous mudstone as particle size decreases (D). These characteristics indicate deposition by waning turbidity flow. Glass spherules are mostly round (rarely oval, teardrop, and dumbbell morphologies), with a maximum diameter of 1.3 mm at the base of the layer (A–C), f—foraminifera.](https://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/132/1-2/215/4908833/215.pdf)
Reworked Chicxulub impact spherules in a marine sequence

Figure 4. Major-elements composition of Gorgonilla glass spherules (Bermúdez et al., 2016) and comparison with Chicxulub impact spherules in NE Mexico (Mimbral—Smit et al., 1992; La Sierrita—Schulte et al., 2003), Texas (Brazos River—Schulte et al., 2006), Haiti (Koeberl and Sigurdsson, 1992), and tropical North Atlantic (Demerara Rise—Schulte et al., 2009). Gorgonilla spherules are similar to black and yellow (high-Ca) glass spherules found in Haiti and Mimbral, NE Mexico, thus confirming an impact origin. Differences with the other sites are associated with the degree of glass alteration.

alteration. At Gorgonilla, most of the spherules consist of unaltered glass. Haiti and Mimbral spherules are significantly weathered, but unaltered glass relicts are still present. In contrast, Demerara Rise, La Sierrita, and Brazos River spherules are almost totally replaced by smectite and chlorite, thus overprinting their original major-element composition.

Biostratigraphy

Planktic foraminifera and radiolarians are the most abundant microfossils in the Gorgonilla section. Planktic foraminiferal biostratigraphy is excellent for relative age dating and to assess the continuity of sediment deposition in Cretaceous-Paleogene boundary sections based on high-resolution age biozonation schemes for the Maastrichtian and Danian (Fig. 5; Keller et al., 1996, 2002b; Li and Keller, 1998). Radiolarian occurrences are rare in Cretaceous-Paleogene boundary sections worldwide, except in areas of upwelling such as New Zealand (Hollis, 1993, 1997, 2003) and Ecuador (Keller et al., 1997b). In New Zealand, radiolarians have been shown to have survived the Cretaceous-Paleogene boundary mass extinction, but significant faunal changes are apparent by a shift from nassellarian- to spumellarian-dominated assemblages (Hollis et al., 2003). The origin and evolution of two lineages of radiolarian species form the basis of the early Paleocene zonation (Fig. 5; Hollis, 1993, 1997).

Figure 5. Late Maastrichtian to early Paleocene biostratigraphy for planktic foraminifera based on the zonation scheme of Li and Keller (1998) and Keller et al. (1996, 2002b) and for radiolarians based on Hollis (1993, 1997). Other zonal schemes are shown for comparison (Huber et al., 2008; Olsson et al., 1999). Magnetic polarity is from Husson et al. (2011), and radiometric ages are from Schoene et al. (2015). FA—first appearance.
Zone CF2 is defined by the last appearance (LA) of *Gansserina gansseri* at the base (base of magnetochron C29r) and first appearance (FA) of *Plummerita hantkeninoides* at the top, with an estimated duration of ~180 k.y.; zone CF1 spans the total range of the index species *P. hantkeninoides*, with an estimated duration of ~170 k.y. ending at the Cretaceous-Paleogene boundary (Fig. 5). These age estimates are based on current U-Pb dating of C29r (Schoene et al., 2015), a Cretaceous-Paleogene boundary age of 66.021 ± 0.024 Ma (Clyde et al., 2016), and sedimentation rates at Elles, Tunisia (Abramovich and Keller, 2002). At Gorgonilla, zone CF2 spans the first 2.13 m of the interval analyzed (Fig. 6). Large (>150 µm) globotruncanids and rugoglobigerinids were the only species identified in this interval. Zone CF1 spans from 11.13 m to 15.60 m just below the spherule-rich layer (Fig. 6). The planktic foraminiferal assemblage was diverse in the large size fraction (>150 µm) and consisted mainly of globotruncanids and rugoglobigerinids. The 63–150 µm and <63 µm size fractions were dominated by heterohelicids, small pseudoguembelinids, and hedbergellids.

The presence of *P. hantkeninoides* below the spherule-rich layer was also reported in a preliminary biostratigraphic study of the Gorgonilla section, and rare small Danian species were interpreted as the result of burrowing (Bermúdez et al., 2016). In our subsequent field work, no burrowing structures were observed in the field, nor were early Danian species found below the spherule layer; the only small specimens present were Cretaceous hedbergellids.

At Gorgonilla, a hiatus (>250 k.y.) spans the Cretaceous-Paleogene boundary from the upper part of latest Maastrichtian zone CF1 through early Danian zones P0, P1a(1), and lower P1a(2) (Figs. 5 and 6). Similar erosion of the early Danian and topmost Maastrichtian spanning the Cretaceous-Paleogene boundary has been recorded worldwide (see section “How Complete is the Cretaceous-Paleogene Transition at Gorgonilla?”). In the earliest Danian, zone P0 defines the boundary clay and evolution of the first Danian species, including *Eoglobigerina edita*, *Parvularugoglobigerina extensa*, *Woodringina hornerstownensis*, and *Woodringina claytonensis*. Zone P1a spans the total range of *Parvularugoglobigerina eugubina*, ending at the magnetochron C29r/C29n boundary, and it can be subdivided into P1a(1) and P1a(2) based on the FA of *Parasubbotina pseudobulloides* and/or *Subbotina triloculinoides* (Fig. 5). At Gorgonilla, early Danian zone P0 and subzone P1a(1) are not present, marking a hiatus.

The first early Danian assemblage overlying the Cretaceous-Paleogene boundary hiatus is observed in the upper part (finer fraction) of the spherule-rich layer and sediments above, and it is typical of subzone P1a(2) (Fig. 6). This assemblage is diverse and includes the index species *P. eugubina*, *P. pseudobulloides*, and *S. triloculinoides*, in addition to *Chiloumobelina midwayensis*, *Chiloumobelina morsei*, *Eoglobigerina edita*, *Eoglobigerina cobuloidellus*, *Globoconusa daubjergensis*, *Guembelitria cretacea*, *Praemurica taurica*, *W. claytonensis*, and *W. hornerstownensis*. Similar assemblages in zone P1a(2) have been observed in North Atlantic and Tethys localities (Canudo et al., 1991; Keller, 1988; Keller and Abramovich, 2009; Keller and Benjamini, 1991; Keller et al., 2013; Mateo et al., 2016; Punekar et al., 2014b). Large

![Figure 6. Planktic foraminiferal biostratigraphy and carbon and oxygen stable isotopes at the Gorgonilla section, Colombia. Gray bands mark turbiditic deposits. Striped band marks spherule-rich deposits. The section records late Maastrichtian zones CF2 and CF1 and early Danian zone P1a(2) with a major hiatus at the Cretaceous-Paleogene boundary spanning part of zone CF1, zone P0, zone P1a(1), and part of zone P1a(2). The absence of a negative shift in δ13C at the Cretaceous-Paleogene transition, one of the five defining criteria used to identify the Cretaceous-Paleogene boundary, supports the Cretaceous-Paleogene boundary hiatus identified based on biostratigraphy. GI-# refers to each sample in our set. VPDB—Vienna Peedee belemnite.](https://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/132/1-2/215/4906833/215.pdf)
Reworked Chicxulub impact spherules in a marine sequence

Cretaceous species, mostly globotruncanids, are present just above the Cretaceous-Paleogene boundary hiatus, mostly concentrated at and near the base of the spherule-rich layer and mixed with spherules and lithics of similar size (Figs. 3I, 3J, and 6). In contrast, Danian species are found within large lithic clasts at the base of the spherule-rich layer and within fine sediments at the top, suggesting depositional processes that led to normal gradation (i.e., waning turbidity current and settling of turbidite material in suspension). Bermúdez et al. (2016) proposed that the presence of Danian species in the spherule layer might be the result of burrowing. However, the presence of microfossils in lithic clasts and fine sediments is not restricted to burrowing structures, which implies both older and/or contemporaneous deposition with the spherule-rich layer.

Radiolaria

Radiolarians are abundant and showed moderate to good preservation in both the calcareous siliceous mudstone and the turbiditic litharenites at Gorgonilla. Biostratigraphic interpretation of the assemblages is complicated by the occurrence of four distinct faunal elements (Fig. 7): (1) species that are known to range across the Cretaceous-Paleogene boundary, such as Amphipyndax stockii, Dictyomitra andersoni (Plate 1, no. 14, see footnote 1), and Dictyomitra multicostata; (2) species that are known from the latest Cretaceous in low latitudes and may well range in the Paleocene, such as Amphipyndax tylothus (Plate 1, no. 13, see footnote 1) and Siphocampe altamontensis; (3) rare species that are restricted to the Campanian, specifically Amphipyndax pseudocolumnus, Afens lirioides (Plate 1, no. 7, see footnote 1), and Theocampe urna; and (4) equally rare species that have been thought to be restricted to the Paleocene. Although there are no obvious differences in preservation, our preliminary interpretation is that the Danian elements were reworked into the late Maastrichtian–early Danian sediments. Assemblages spanning the Cretaceous-Paleogene boundary differ only in the rare occurrence of Paleocene-restricted spherule-rich deposits. A hiatus at the Cretaceous-Paleogene boundary is recorded by the absence of the earliest Paleocene zone RP1 index species, Amphisphaera aotea, has not been observed in these samples, thus supporting a Cretaceous-Paleogene boundary hiatus. The absence of A. aotea could also imply that the A. aotea–A. kina succession was restricted to high latitudes. At odds with previous records, the Paleocene species Barvella granulata (Plate 1, 8–10, see footnote 1) occurred in two samples below the boundary, in addition to three of the Paleocene samples examined. This suggests that this species may have originated in low latitudes during the latest Cretaceous and migrated to higher latitudes in the early Paleocene. Apparent precursors to the Paleocene species Lithostrobus longus (Plate 1, 11–12, see footnote 1) were also present in Cretaceous and Paleocene samples. In summary, the overall similarities in assemblages from different lithologies (calcareous siliceous mudstones, turbiditic litharenites) below and above the Cretaceous-Paleogene boundary hiatus suggest that most of the radiolarians were discovered in place and signal survival of radiolarians across the boundary, as previously documented for Cretaceous-Paleogene boundary sections in the New Zealand region (Hollis, 1993, 1997). Further detailed census studies of these radiolarians-rich samples are required to confirm these preliminary observations.

Figure 7. Radiolarian biostratigraphy at the Gorgonilla section, Colombia. Gray bands mark turbiditic deposits. Striped band marks spherule-rich deposits. A hiatus at the Cretaceous-Paleogene boundary is recorded by the absence of the earliest Paleocene zone RP1 index species Amphisphaera aotea, confirming findings based on planktic foraminiferal biostratigraphy and carbon stable isotopes. Representative species are shown in Plate 1 (see text footnote 1). GI-# refers to each sample in our set.
Carbon and Oxygen Stable Isotopes

Bulk-rock carbon and oxygen isotopes are used as proxies for productivity and climate, respectively. At Gorgonilla, diagenetic overprinting of the primary isotope signals is relatively minor, based on poor correlation coefficients between δ13C and δ18O (R² = 0.17), δ13C and calcite (R² = 0.01), and δ18O and calcite (R² = 0.001; Mitchell et al., 1997). Nonetheless, persistent local volcanism indicated by recurrent volcanic-rich turbidite deposits could have overprinted these isotopic records. Very low δ13C values throughout the section suggest a significant source of 13C, probably related to cracking of organic matter due to intense volcanic activity (typical organic matter δ13C signal is ~29‰, which is significantly lower than the δ13C of ambient seawater, +1‰; Kump and Arthur, 1999).

At Gorgonilla, δ13C values range from –7.9‰ to –4.2‰ (an average of –6.2‰), and δ18O values range from –2.9‰ to –1.6‰ (an average of –2.2‰) in zone CF2 and rapidly decrease to an average of –10.1‰ and –4.1‰ above the CF2/CF1 boundary, respectively (Fig. 6). This decrease and following large fluctuations between –13.7‰ and –3.8‰ for δ13C and between –4.0‰ and –1.9‰ for δ18O in zone CF1 may be related to rapid global climate changes and environmental perturbations associated with the eruption of the Deccan Traps in India (e.g., Keller et al., 2016; Punekar et al., 2014a). Changes due to diagenetic alteration cannot be ruled out either.

One of the defining criteria used to identify the Cretaceous-Paleogene boundary is a negative shift of 2‰–3‰ in δ13C that represents the collapse in primary productivity during the Cretaceous-Paleogene boundary mass extinction (Keller, 2014). At Gorgonilla, the absence of this shift across the transition from Maastrichtian to Danian sediments confirms the Cretaceous-Paleogene boundary hiatus identified based on biostratigraphy (Fig. 6). Above the Cretaceous-Paleogene boundary hiatus, δ13C and δ18O values slightly increase to an average of –5.6‰ and –2.2‰, respectively, with no major fluctuations as expected for an early Danian zone P1a interval (e.g., Keller and Lindinger, 1989; Quillévéré et al., 2008; Stüben et al., 2002; Fig. 6).

Mineralogy

Relative changes in bulk-rock mineralogy generally indicate changes in sediment source, sea-level fluctuations, and intensity of weathering. At Gorgonilla, three discrete types of rock units are recognized: pelagic deposits, turbidites, and the spherule-rich layer. A comparison of the mineralogical composition of these units yielded insight into the depositional nature of the impact spherules.

The most abundant minerals in the Gorgonilla section are phyllosilicates, calcite, and Na-plagioclase, while quartz, feldspar, dolomite, pyrite, and goethite are minor components (Fig. 8). The unquantified component corresponds to poorly crystallized minerals (mainly opal with minor pyrite and goethite), pyroxenes (augite), and amphiboles. Maastrichtian and Danian pelagic deposits and turbidites were compared based on statistical mean differences. Results showed that pelagic deposits significantly changed their composition in the early Danian, whereas the turbidites composition remained statistically similar below and above the Cretaceous-Paleogene boundary hiatus. In addition, pelagic deposits and turbidites were also significantly different.

Maastrichtian pelagic deposits consisted primarily of calcite (32.0%), phyllosilicates (22.9%), unquantified minerals (mainly opal, pyroxenes, and amphibole, 19.4%), and Na-plagioclase (18.7%; Fig. 8; Table 1). In contrast, the most abundant mineral in Danian pelagic sediments were phyllosilicates (33.2%), followed by Na-plagioclase (26.0%), calcite (22.8%), and unquantified minerals (12.5%). This change from calcite-rich Maastrichtian deposits to phyllosilicate-rich Danian deposits probably reflects the reduction of calcium carbonate (CaCO₃) production in the aftermath of the Cretaceous-Paleogene boundary mass extinction (e.g., Caldeira and Rampino, 1993; Caldeira et al., 1990; Kump, 1991). Turbidites were dominated by phyllosilicates (45.8%), followed by Na-plagioclase (21.0%), unquantified minerals (15.1%), and calcite (10.6%; Fig. 8; Table 1). However, a few turbidite deposits showed higher calcite content, suggesting increased mixing with locally derived sediments due to higher dynamic conditions.

The main differences between pelagic deposits and turbidites were phyllosilicates and calcite contents, which are ultimately associated with different sediment sources. Pelagic sediments consist mostly of biologic materials and e.g., foraminifera, radiolarians) and other fine volcanic and terrigenous particles settling onto the seafloor (Nichols, 2009). In contrast, turbidites are typically the dominant clastic deposits in open-marine environments, resulting from turbidity currents that rework, transport, and redeposit material from shallower depths (with higher detrital content) into deeper waters (Nichols, 2009).

The most abundant minerals in the spherule-rich layer were phyllosilicates (46.4%) and calcite (36.5%; Fig. 8; Table 1). Because of the high phyllosilicates content, the spherule-rich layer is interpreted as another turbidite deposit, as also indicated by the lithology and biostratigraphy (note: only a small percentage of the phyllosilicates corresponds to spherule alteration products). The calcite content in the spherule-rich layer is largely due to infillings of spherule vesicles and shells of planktic foraminifera, especially large Cretaceous species reworked and transported downslope by the turbidity current.

DISCUSSION

How Complete Is the Cretaceous-Paleogene Transition at Gorgonilla?

As discussed above, biostratigraphy and stable isotopes show a major Cretaceous-Paleogene boundary hiatus at Gorgonilla that eliminates planktic foraminiferal zones P0 and P1a(1) and the Cretaceous-Paleogene boundary δ13C negative shift that marks the mass extinction and also truncates part of zones CF1 and Pla2 (Fig. 6). The missing interval is estimated at >250 k.y. (based on current U-Pb dating of C29r [Schoene et al., 2015], the age of 66.021 ± 0.024 Ma for the Cretaceous-Paleogene boundary [Clyde et al., 2016], and sedimentation rates at Elles, Tunisia [Abramovich and Keller, 2002]). Trace-element analysis on the matrix of the spherule-rich layer showed the absence of significant Ni, Co, and Cr enrichments, characteristic of Cretaceous-Paleogene boundary deposits, therefore supporting the presence of a Cretaceous-Paleogene boundary hiatus (T. Adatte and A. Bitchong, 2017, personal commun.). The Cretaceous-Paleogene transition at Gorgonilla is thus incomplete, with the critical Cretaceous-Paleogene boundary event missing.

In contrast, Renne et al. (2018) reported a Cretaceous-Paleogene boundary hiatus at Gorgonilla that spanned no more than 10 k.y., based on the presence of a bloom in the planktic foraminiferal species Guembelitria cretacea interpreted as the Planktic Foraminiferal Acme Stage 1 (PFAS-1) of Arenillas et al. (2006), which occurred right after the Cretaceous-Paleogene boundary. However, this is a poor basis for age control because Guembelitria cretacea is the only long-term survivor of the end-Cretaceous mass extinction, with blooms reported from the late Maastrichtian into early Paleocene zone P1b more than 500 k.y. after the Cretaceous-Paleogene boundary (e.g., Keller and Benjamini, 1991; Pardo et al., 1996; Abramovich et al., 1998, 2010, 2011; Keller, 1988, 1989, 2001, 2002; Keller et al., 1996, 2011a, 2011b, 2012, 2013; Canudo et al., 1991; MacLeod and Keller, 1994; Molina et al., 1998; Luciani, 2002; Pardo and Keller, 2008; Punekar et al., 2014a, 2014b). Clearly, a Guembelitria bloom above the spherule-rich
Figure 8. Bulk-rock mineralogy at the Gorgonilla section, Colombia. Unquantified minerals refer to opal, pyroxene, and amphibole (not quantified due to the low intensity of their respective peaks and/or absence of good representative standards). Gray bands mark turbiditic deposits. Striped bands mark spherule-rich deposits (note that the three striped bands represent the same spherule layer that was triplicated at one edge of the outcrop by syndepositional slumping and minor postdepositional faulting). The most abundant minerals in the spherule-rich layer are phyllosilicates, similar to the turbiditic deposits. GI-# refers to each sample in our set.
layer at Gorgonilla cannot be used to age date the duration of the Cretaceous-Paleogene boundary hiatus. Moreover, Renne et al. (2018) only focused on the time missing above the boundary (which they estimated at 10 k.y.), but the missing zones P0 and P1a(1) span about half of C29r above the Cretaceous-Paleogene boundary (~250 k.y.). They also ignored the potentially missing interval of the Maastrichtian below the boundary, even though they claimed there is no evidence of zone CF1 index species *P. hantkeninoides*, which would lead to a missing Maastrichtian interval of ~170 k.y.

Erosion across the Cretaceous-Paleogene boundary is common and has been recorded worldwide, where a hiatus frequently spans from the late Maastrichtian zones CF2 or CF3 through most or all of early Danian zones P1a(1) and P1a(2) (Fig. 9). In more complete sections, like Gorgonilla, a shorter Cretaceous-Paleogene boundary hiatus is also present spanning part or all of zone CF1, zone P0, and part or all of P1a(1). Local conditions (e.g., current intensity, rate of sedimentation) usually affect the extent of erosion, with the more complete sequences focusing on the time missing above the boundary (e.g., Norris et al., 1999, 2000; Olsson et al., 1997; Keller et al., 2013; Mateo et al., 2016). Indeed, claims of ultimate proof that the impact is Cretaceous-Paleogene boundary in age based on spherule layers at the boundary have generally failed to recognize the reworked nature of these spherule deposits, including early Danian fauna that evolved long after the mass extinction and a hiatus (e.g., Norris et al., 1999, 2000; Olsson et al., 1997; Schulte et al., 2009; see also Figs. 9 and 10 herein). It is thus imperative to assess the depositional nature of spherule deposits before drawing any conclusions regarding the timing of the Chicxulub impact.

TABLE 1. BULK-ROCK MINERALOGY AT THE GORGONILLA SECTION, COLOMBIA

<table>
<thead>
<tr>
<th>Pelagic sediments (Maastrichtian)</th>
<th>Phyllosilicates (%)</th>
<th>Quartz (%)</th>
<th>K-feldspar (%)</th>
<th>Na-plagioclase (%)</th>
<th>Calcite (%)</th>
<th>Dolomite (%)</th>
<th>Pyrite (%)</th>
<th>Goethite (%)</th>
<th>Unquantified (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg</td>
<td>22.93</td>
<td>2.25</td>
<td>1.67</td>
<td>18.70</td>
<td>32.01</td>
<td>0.38</td>
<td>0.92</td>
<td>1.62</td>
<td>19.44</td>
</tr>
<tr>
<td>SD</td>
<td>9.94</td>
<td>1.59</td>
<td>2.29</td>
<td>12.75</td>
<td>21.34</td>
<td>0.67</td>
<td>0.69</td>
<td>2.18</td>
<td>9.37</td>
</tr>
<tr>
<td>n</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>lower</td>
<td>20.08</td>
<td>1.80</td>
<td>1.02</td>
<td>15.04</td>
<td>25.88</td>
<td>0.19</td>
<td>0.72</td>
<td>1.00</td>
<td>16.75</td>
</tr>
<tr>
<td>upper</td>
<td>25.79</td>
<td>2.71</td>
<td>2.33</td>
<td>22.36</td>
<td>38.14</td>
<td>0.28</td>
<td>1.12</td>
<td>2.25</td>
<td>22.13</td>
</tr>
<tr>
<td>Pelagic sediments (Danian)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>33.15</td>
<td>1.91</td>
<td>1.66</td>
<td>25.94</td>
<td>22.82</td>
<td>0.18</td>
<td>0.75</td>
<td>1.10</td>
<td>12.48</td>
</tr>
<tr>
<td>SD</td>
<td>13.62</td>
<td>0.81</td>
<td>2.58</td>
<td>10.07</td>
<td>19.53</td>
<td>0.34</td>
<td>0.74</td>
<td>1.48</td>
<td>8.97</td>
</tr>
<tr>
<td>n</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>lower</td>
<td>27.76</td>
<td>1.59</td>
<td>0.64</td>
<td>21.96</td>
<td>15.09</td>
<td>0.04</td>
<td>0.46</td>
<td>0.51</td>
<td>8.94</td>
</tr>
<tr>
<td>upper</td>
<td>38.54</td>
<td>2.23</td>
<td>2.68</td>
<td>29.03</td>
<td>30.55</td>
<td>0.31</td>
<td>1.05</td>
<td>1.68</td>
<td>16.03</td>
</tr>
<tr>
<td>Turbidites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>45.84</td>
<td>1.04</td>
<td>3.12</td>
<td>21.03</td>
<td>10.58</td>
<td>0.33</td>
<td>0.74</td>
<td>2.24</td>
<td>15.07</td>
</tr>
<tr>
<td>SD</td>
<td>11.91</td>
<td>0.52</td>
<td>5.19</td>
<td>12.16</td>
<td>10.18</td>
<td>0.55</td>
<td>0.70</td>
<td>1.29</td>
<td>8.56</td>
</tr>
<tr>
<td>n</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>lower</td>
<td>40.69</td>
<td>0.82</td>
<td>0.88</td>
<td>15.77</td>
<td>6.18</td>
<td>0.09</td>
<td>0.44</td>
<td>1.68</td>
<td>11.37</td>
</tr>
<tr>
<td>upper</td>
<td>50.99</td>
<td>1.27</td>
<td>3.57</td>
<td>26.28</td>
<td>14.98</td>
<td>0.57</td>
<td>1.04</td>
<td>2.80</td>
<td>16.78</td>
</tr>
<tr>
<td>Spherule-rich layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>46.40</td>
<td>0.80</td>
<td>2.74</td>
<td>4.09</td>
<td>36.48</td>
<td>0.63</td>
<td>1.04</td>
<td>2.59</td>
<td>5.23</td>
</tr>
</tbody>
</table>

Note: Unquantified minerals refer to opal, pyroxene, and amphibole (not quantified due to the low intensity of their respective peaks and/or absence of good representative standards). Avg—average, SD—standard deviation, n—number of samples, lower—lower bound of the 95% confidence interval, upper—upper bound of the 95% confidence interval.

Age and Nature of the Gorgonilla Spherule-Rich Layer

The stratigraphic position of Chicxulub impact deposits, such as the spherule-rich layer at Gorgonilla, is a key factor for interpreting the age of this impact relative to the Cretaceous-Paleogene boundary mass extinction. Only primary spherule deposits representing direct fallout from the impact with no subsequent reworking can yield this information. Unfortunately, most Chicxulub impact spherule layers are reworked and redeposited into younger sediments and therefore provide no stratigraphic evidence from which the timing of the impact can be inferred (e.g., Keller et al., 2013; Mateo et al., 2016). Indeed, claims of ultimate proof that the impact is Cretaceous-Paleogene boundary in age based on spherule layers at the boundary have generally failed to recognize the reworked nature of these spherule deposits, including early Danian fauna that evolved long after the mass extinction and a hiatus (e.g., Norris et al., 1999, 2000; Olsson et al., 1997; Schulte et al., 2009; see also Figs. 9 and 10 herein). It is thus imperative to assess the depositional nature of spherule deposits before drawing any conclusions regarding the timing of the Chicxulub impact.

Relative Age of the Gorgonilla Spherule-Rich Layer

Biosтратigraphy at Gorgonilla shows that sediments below the spherule-rich layer were deposited during the late Maastrichtian planktic foraminiferal zone CF1, and sediments above the spherule-rich layer were deposited during Danian zone P1a(2) (Fig. 6). Within the spherule-rich layer, both Maastrichtian and Danian species are present, indicating a mixture of sediments from different ages (Fig. 6). The youngest species are characteristic of zone P1a(2), with the same assemblages in the pelagic sediments above the spherule layer. Therefore, the depositional age of this spherule-rich layer is zone P1a(2), at least 250–300 k.y. after the Cretaceous-Paleogene boundary. Bermúdez et al. (2016) argued that the spherule-rich layer represents primary fallout from Chicxulub at Cretaceous-Paleogene boundary time and that absence of Danian microfossils at the very base cannot falsify this interpretation. The main problem with this interpretation is that the spherule-rich layer is a single turbiditic event and consequently shows no breaks in sedimentation, as we would expect if the age of the spherules at the very base were different from the age of spherules in the upper part of this 3-cm-thick layer (Fig. 3A). Therefore, if sediments at the top correspond to zone P1a(2), then deposition of spherules at the base must correspond to zone P1a(2). The distribution of large spherules and Cretaceous foraminifera at the base and small Danian foraminifera at the top of the spherule-rich layer represent normal gradation that resulted from settling of larger and heavier particles followed by successively smaller and lighter particles, which included the very small early Danian species.

Depositional Nature of the Gorgonilla Spherule-Rich Layer

The Gorgonilla spherule-rich layer was previously interpreted as an undisturbed deposit representing primary fallout and settling through
Figure 9. Overall correlation of hiatuses during the Cretaceous-Paleogene transition reflecting increased climate variability, intensified currents, and erosion on a global scale: Qreiya, Egypt (Punekar et al., 2014b); Givat Mador and Ben Gurion, Israel (Keller and Benjamini, 1991); Amboanio, Madagascar (Abramovich et al., 2003); Deep Sea Drilling Project (DSDP) Site 216, Indian Ocean (Keller et al., 2016); DSDP Site 525A, South Atlantic (Abramovich and Keller, 2003; Li and Keller, 1998); DSDP Site 384, North Atlantic (Mateo et al., 2016); Bass River, New Jersey, Ocean Drilling Program (ODP) Site 1049 and ODP Site 1259, North Atlantic (Keller et al., 2013); Beloc, Haiti (Keller et al., 2001); Gorgonilla, Colombia (this study). El Kef and Elles sections, Tunisia, are considered to be the most complete Cretaceous-Paleogene boundary sections in the world (Keller, 1988; Keller and Lindinger, 1989; Keller et al., 2002b) and are shown for comparison.

Comparison with Other Chicxulub Impact Spherule-Rich Deposits

Since the discovery of the Chicxulub impact structure in the Yucatan Peninsula (Hildebrand et al., 1991; Pope et al., 1991), many impact spherule-rich deposits, both primary and reworked, have been documented at or near the Cretaceous-Paleogene boundary in the Gulf of Mexico (e.g., Alvarez et al., 1992; Keller et al., 1994a, 2009a; Lopez-Oliva and Keller, 1996; Schulte et al., 2003; Smit, 1999; Smit et al., 1992, 1996; Stinnesbeck et al., 1993), Texas (e.g., Adatte et al., 2011; Keller et al., 2007, 2011b; Schulte et al., 2006; Yancey, 1996), Caribbean Sea, Haiti, Belize, and Guatemala (e.g., Izett et al., 1990; Maurrasse and Sen, 1991; Sigurdsson et al., 1991; Smit et al., 1996; Stinnesbeck et al., 1997; Keller et al., 2001, 2003b; Alegret et al., 2005), and the North Atlantic Ocean (e.g., Olsson et al., 1997; Norris et al., 1999; MacLeod et al., 2007; Keller et al., 2013; Fig. 10).

Primary spherule deposits marking direct fallout from the Chicxulub impact are best known from El Peñón, NE Mexico (Keller et al., 2009a). A 2-m-thick spherule-rich unit was discovered in late Maastrichtian zone CF1 sediments deposited in an upper bathyal slope environment (Keller et al., 2009a). The basal part of this spherule unit consists of densely packed glass shards, compressed and welded spherules, 2–5 mm in diameter, with common concave-convex contacts (Fig. 11). Interstitial spaces are infilled with calcite and devoid of detrital or biogenic material. This suggests rapid deposition of still-hot impact glass that possibly accumulated as rafts on the sea surface before rapidly sinking to the seafloor (Keller et al., 2009a). Toward the top, spherules decrease in abundance and size and are generally isolated in a marly matrix.
The stratigraphically oldest spherule-rich deposits have been found in NE Mexico and Texas near the base of late Maastrichtian zone CF1, predating the Cretaceous-Paleogene boundary by ~170 k.y. (Keller et al., 2002a, 2009a). Subsequent erosion and redeposition by ~170 k.y. (Keller et al., 2002a, 2009a, 2009b). Subsequent erosion and redeposition on Demerara Rise, off the coast of Venezuela, is another example of a reworked spherule deposit that was initially interpreted as primary Chicxulub impact ejecta (MacLeod et al., 2007; Schulte et al., 2009). A 2-cm-thick spherule-rich layer with normal gradation is observed above an erosional contact marking a Cretaceous-Paleogene boundary hiatus (Fig. 15; Keller et al., 2013). Sediments below the spherule-rich layer correspond to the late Maastrichtian zone CF1, and sediments above are early Danian zone P1a(1). The spherule-rich layer shows both late Maastrichtian and early Danian species along with detrital material presumably from erosion and transport from the Guyana craton (Keller et al., 2013). The Gorgonilla spherule-rich layer is comparable with the reworked impact deposit at Demmera Rise, thus further supporting deposition by turbidity currents long after the Chicxulub impact.

Age of the Chicxulub Impact

The age of the Chicxulub impact has been controversial since the discovery of the impact site in the Yucatan Peninsula. Impact spherules found in the Gulf of Mexico, Caribbean, and North Atlantic have been used to assess the age of the impact based on their stratigraphic position relative to the mass extinction horizon.

The stratigraphically oldest spherule-rich deposits have been found in NE Mexico and Texas near the base of late Maastrichtian zone CF1, predating the Cretaceous-Paleogene boundary by ~170 k.y. (Keller et al., 2002a, 2009a, 2009b). Subsequent erosion and redeposition with the same mineralogical composition as the overlying pelagic deposits, which indicates that current activity affected the top of the deposit sometime after settling (Fig. 12; Keller et al., 2009a).

The Gorgonilla spherule-rich layer shows none of the characteristic melted glass features of those from NE Mexico. Instead, deposition occurred in the early Danian zone P1a(2), impact spherules are primarily spherical with no evidence of compression or welding (Fig. 13), volcanic lithics and planktic foraminifera are common (Fig. 3), the matrix is detrital, and the mineralogical composition is significantly different from the overlying pelagic sediments (Fig. 8; Table 1).

Reworked Chicxulub impact spherules are ubiquitous, associated with intense erosion, transport, and redeposition of late Maastrichtian sediments due to sea-level changes and intensification of the Gulf Stream, mostly affecting Caribbean and North Atlantic sites (e.g., Keller et al., 2013). One of the first Chicxulub spherule-rich deposits was found in Beloc, Haiti (e.g., Izett, 1991; Izett et al., 1990; Sigurdsson et al., 1991). Even though this deposit was initially thought to be primary and coincident with the Cretaceous-Paleogene boundary (e.g., Izett, 1991; Izett et al., 1990, 1991; Lamolda et al., 1997; Maurrasse and Sen, 1991; Sigurdsson et al., 1991; Van Fossen et al., 1995), high-resolution biostratigraphic studies show that it had been reworked into the early Danian zone P1a(1) above a Cretaceous-Paleogene boundary hiatus (Keller et al., 2001). This spherule-rich deposit overlies late Maastrichtian zone CF1 sediments above an erosional surface with subrounded clasts of limestone, mudstone, and wackestone. The most expanded section shows a 70-cm-thick spherule-rich deposit represented by alternating layers with different abundances of spherules, and detrital and biogenic material. These layers are normally graded and show epositional contacts and were interpreted as the result of discrete turbiditic events (Fig. 14; Keller et al., 2001). Spherules reach a maximum diameter of 3.5 mm and are mostly altered to calcite and smectite, even though some black glass spherules with altered rims and yellow, vesicular glass spherules are also observed (Izett et al., 1990; Keller et al., 2001). Late Maastrichtian and early Danian planktic foraminiferal species are commonly present and mixed within the spherule-rich deposit (Keller et al., 2001).

The spherule-rich layer at Gorgonilla reveals very similar characteristics to Haiti, including a normally graded deposit above an erosional surface (Figs. 2C, 2D, and 3A) and late Maastrichtian and early Danian planktic foraminifera mixed with lithic clasts and spherules in a detrital matrix (Figs. 3 and 6). At Haiti, the thicker deposit with larger spherules can be explained by proximity to the Chicxulub impact site (~800 km), in comparison to the more distant Gorgonilla locality (~3000 km).

Ocean Drilling Program (ODP) Site 1259B on Demerara Rise, off the coast of Venezuela, is another example of a reworked spherule deposit that was initially interpreted as primary Chicxulub impact ejecta (MacLeod et al., 2007; Schulte et al., 2009). A 2-cm-thick spherule-rich layer with normal gradation is observed above an erosional contact marking a Cretaceous-Paleogene boundary hiatus (Fig. 15; Keller et al., 2013). Sediments below the spherule-rich layer correspond to the late Maastrichtian zone CF1, and sediments above are early Danian zone P1a(1). The spherule-rich layer shows both late Maastrichtian and early Danian species along with detrital material presumably from erosion and transport from the Guyana craton (Keller et al., 2013). The Gorgonilla spherule-rich layer is comparable with the reworked impact deposit at Demmera Rise, thus further supporting deposition by turbidity currents long after the Chicxulub impact.

Figure 10. Paleogeography at the Cretaceous-Paleogene (KPB) transition and paleolocations of Cretaceous-Paleogene boundary sections previously analyzed. Paleolocation symbols indicate presence or absence of Chicxulub impact spherules and their stratigraphic age. Only NE Mexico and Texas record impact spherule layer within late Maastrichtian zone CF1 (~170 k.y. before the Cretaceous-Paleogene boundary), while impact spherules in all other localities (Gulf of Mexico, Caribbean, and North Atlantic) are reworked into early Danian zone P1a(1) or P1a(2) (~100 k.y. after the Cretaceous-Paleogene boundary) overlying hiatuses of variable extent. Impact spherules at Gorgonilla represent a reworked deposit within early Danian zone P1a(2) sediments. Figure is modified from Mateo et al. (2016).
Figure 11. (A–H) Primary spherule deposit at El Peñon, NE Mexico, marking direct fallout from the Chicxulub impact. Deposition occurred rapidly, possibly by raft-like accumulation of hot spherules at the sea surface and rapid sinking. The basal part of this spherule unit is devoid of detrital or biogenic material and consists of vesicular spherules (A, B), compressed spherules (C, D) with common concave-convex contacts (E), glass shards (F, G), and welded, amalgamated spherules (H). Pictures are from Keller et al. (2009a). Spherules range from 2 mm to 5 mm in size.

Figure 12. (A–D) Primary spherule deposit at El Peñon, NE Mexico, marking direct fallout from the Chicxulub impact. Toward the top of this unit, spherules decrease in abundance and size and are generally isolated in a marly matrix, suggesting that current activity affected the top of the deposit sometime after settling. Pictures are from Keller et al. (2009a).

Figure 13. Comparison between (A) primary Chicxulub impact spherules at El Peñon, NE Mexico (Keller et al., 2009a), and (B) reworked Chicxulub impact spherules at Gorgonilla, Colombia. The Gorgonilla deposit shows none of the characteristic melted glass features of NE Mexico. Instead, impact spherules are primarily spherical with no evidence of compression or welding, volcanic lithics and planktic foraminifera are common, and the matrix is detrital.

Figure 14. Comparison between (A, B) reworked Chicxulub impact spherules in Haiti (Izett, 1991; Keller et al., 2001) and (C, D) reworked Chicxulub impact spherules at Gorgonilla, Colombia. Both deposits overlie an erosional surface, are normally graded, and show a mix of spherules, lithics, and Maastrichtian and Danian microfossils in a detrital matrix, indicating deposition by turbiditic events. (Photo credit for C: Hermann Bermúdez.)

Figure 15. Comparison between (A) reworked Chicxulub impact spherules at Ocean Drilling Program (ODP) Site 1259, tropical North Atlantic (Keller et al., 2013; Schulte et al., 2009) and (B) reworked Chicxulub impact spherules at Gorgonilla, Colombia. Both deposits consist of a thin, normally graded, spherule-rich layer with abundant lithics and Maastrichtian and Danian microfossils above an erosional contact, indicating deposition by turbidity currents long after the Chicxulub impact.
of these primary deposits left multiple reworked spherule-rich layers within zone CF1 (Fig. 10) at the base of submarine channels filled with sandstones and marls below the Cretaceous-Paleogene boundary (Adatte et al., 1996, 2011; Keller, 2007; Keller et al., 2002a, 2003a, 2004a, 2004b, 2007, 2009a, 2009b; Stinnesbeck et al., 1993, 1996). Alternatively, these reworked spherules have been interpreted as the primary fallout of the Chicxulub impact followed by impact-induced tsunami deposits at the Cretaceous-Paleogene boundary, thus reconciling the stratigraphic separation of spherules and the Cretaceous-Paleogene boundary as due to the same impact event (e.g., Heymann et al., 1998; Schulte et al., 2006; Smit, 1999; Smit et al., 1992, 1996), while the oldest, actually primary spherule-rich deposits were interpreted as slumps (Schulte et al., 2003, 2010; Soria et al., 2001).

However, evidence of bioturbation as well as discrete volcanic ash layers within sediments in between impact spherules and the Cretaceous-Paleogene boundary indicate normal marine sedimentation over tens of thousands of years, strongly suggesting that the impact preceded the mass extinction (Adatte et al., 1996; Ekdale and Stinnesbeck, 1998; Keller et al., 1994b, 1997a, 2007; Stinnesbeck et al., 1993, 1996).

In the Caribbean and North Atlantic, impact spherules in between Maastrichtian and Danian sediments (with no controversial tsunami deposits) have been interpreted as the ultimate fallout of the Chicxulub impact occurred at the Cretaceous-Paleogene boundary and caused the mass extinction (e.g., Isez et al., 1990; Maurasse and Sen, 1991; Norris et al., 1999; Olsson et al., 1997; Sigurdsson et al., 1991; Smit et al., 1992, 1996; Smit, 1999; Schulte et al., 2009). However, high-resolution planktic foraminiferal biostatigraphy has shown that most of these deposits have been reworked within early Danian zone P1a(1) and/or P1a(2) above a major Cretaceous-Paleogene boundary hiatus spanning from late Maastrichtian zone CF1 (and frequently CF2 and CF3) to the early Danian (e.g., Keller, 2007; Keller et al., 2001, 2003b, 2013; Mateo, 2016; Fig. 10).

Can radiometric dating (40Ar/39Ar) solve this controversy over the age of the Chicxulub impact? Since the early 1990s, radiometric dating has been the preferred solution to solve this argument. Early 40Ar/39Ar dating of impact spherules yielded ages supposedly synchronous with the Cretaceous-Paleogene boundary mass extinction (Dalrymple et al., 1993; Isez et al., 1991; Renne et al., 2013; Sharpton et al., 1992; Swisher et al., 1992), albeit with an error margin of 1%–2% due to argon loss, making such claims dubious at best (e.g., Vermeesch, 2015). Later, Renne et al. (2013) reported 40Ar/39Ar ages of 66.043 ± 0.043 Ma for the Cretaceous-Paleogene boundary and 66.038 ± 0.025 Ma for impact spherules from Haiti, implying that the impact and the Cretaceous-Paleogene boundary ages were statistically indistinguishable. More recently, Renne et al. (2018) reported an age of 66.051 ± 0.031 Ma for the Gorgonilla impact spherules, concluding that the spherule age, and thus impact age, is indistinguishable from the Cretaceous-Paleogene boundary. Nevertheless, it is important to note that, even though the Chicxulub impact and the Cretaceous-Paleogene boundary ages are statistically indistinguishable, the dating error range spans 120 k.y. (maximum age difference of 21 ± 60 k.y.; Renne et al., 2018), even without taking into account uncertainties of argon loss. Therefore, a Cretaceous-Paleogene boundary 40Ar/39Ar age for the Chicxulub impact remains questionable and not inconsistent with a zone CF1 age. Solving this age problem will necessitate U-Pb zircon dating of ash layers above and below primary, as well as reworked, Chicxulub impact spherule deposits.

Role of the Chicxulub Impact in the Cretaceous-Paleogene Boundary Mass Extinction

In addition to the age controversy, only minor faunal changes have been associated with the Chicxulub impact, despite being claimed the main trigger of the Cretaceous-Paleogene boundary mass extinction (Keller et al., 2009a, 2009b). In contrast, Deccan volcanism in India has recently gained attention as a potential contributor to this biotic crisis because: (1) magnetostratigraphy and U-Pb dating reveals that 80% of the total Deccan volume erupted in C29r (Chenet et al., 2007, 2008, 2009), spanning the last 300 k.y. of the Maastrichtian and 500 k.y. of the early Danian (Schoene et al., 2015); (2) a record of the mass extinction within Deccan intertrappean sediments between the longest lava flows on Earth suggests a direct cause-and-effect relationship between these events (Keller et al., 2011a); and (3) Deccan volcanism in C29r below the Cretaceous-Paleogene boundary has been directly linked to rapid climate changes (e.g., Li and Keller, 1998; MacLeod and Huber, 2001; Nordt et al., 2003; Wilf et al., 2003; Stüben et al., 2003; MacLeod et al., 2005) and ocean acidification (e.g., Font et al., 2014, 2016; Punekar et al., 2016). These advances challenge the long-held belief that the Chicxulub impact was the sole cause for the Cretaceous-Paleogene boundary mass extinction. Impact proponents reconcile these findings with the impact hypothesis by proposing that the impact could have triggered accelerated and intensified Deccan volcanic eruptions, ultimately leading to the mass extinction (Renne et al., 2015; Richards et al., 2015; Sprain et al., 2019). However, such a link has been previously shown to be unlikely (Meschede et al., 2011). Moreover, Deccan eruptions accelerated well before the mass extinction, which would contradict a Cretaceous-Paleogene boundary age for the Chicxulub impact (Schoene, 2018, personal commun.). For all these reasons, the age of the Chicxulub impact remains controversial, and its environmental consequences must be reassessed in view of the massive Deccan eruptions driving climate change and ocean acidification associated with the Cretaceous-Paleogene boundary mass extinction.

CONCLUSIONS

(1) The Cretaceous–Paleogene section on Gorgonilla Island, Colombia, consists of light gray-yellow calcareous siliceous mudstones (pelagic deposits) alternating with dark olive-brown litharenites (turbidites). A 3-cm-thick Chicxulub impact spherule-rich layer separates Maastrichtian and Danian sediments.

(2) The Cretaceous-Paleogene boundary is marked by a major hiatus spanning >250 k.y. from the upper part of planktic foraminiferal zone CF1 in the late Maastrichtian to zones P0, P1a(1), and the lower part of P1a(2) in the early Danian. Radiolarian biostratigraphy also records a Cretaceous-Paleogene boundary hiatus based on the absence of earliest Danian zone RP1.

(3) Above the Cretaceous-Paleogene boundary hiatus, Chicxulub impact spherules are reworked into early Danian sediments, similar to Chicxulub impact deposits in the Caribbean and North Atlantic. The spherule-rich layer has a clast-supported sedimentary fabric with normal grading and contains abundant glass spherules, lithics (mostly volcanic), and Maastrichtian and Danian microfossils. These characteristics indicate deposition by turbiditic currents, similar to the turbiditic litharenites observed throughout the section; they rule out interpretation of primary spherule deposition at Gorgonilla.

ACKNOWLEDGMENTS

This study was based upon work supported by Princeton University, Geosciences Department Tuttle and Scott funds; and the U.S. National Science Foundation (NSF) through the Continental Dynamics Program and Sedimentary Geology and Paleontology Program under NSF grants EAR-0207407 and EAR-0447171. We thank Alexis Godet and another anonymous reviewer for their comments. We thank Parques Nacionales de Colombia for permission to do field work on Gorgona and Gorgonilla Islands and to take samples from the Gorgonilla Cretaceous-Paleogene section. Special thanks go to Hermann Bermúdez.
Reworked Chicxulub impact spherules in a marine sequence

Liliana Bolívar, and Wolfgang Stinnesbeck for their help during field work in Colombia, and to Julieta Suri- riano for her insights and feedback on the lithological and sedimentological analyses.

REFERENCES CITED

Reworked Chicxulub impact spherules in a marine sequence

Science Editor: Rob Strachan

Manuscript Received by the Society 11 March 2019
Revised Manuscript Received 15 March 2019
Manuscript Accepted 29 April 2019
Printed in the USA