High-stress paleoenvironment during the late Maastrichtian to early Paleocene in Central Egypt

Publication Year
2002

Type

Journal Article
Abstract

Biostratigraphic, mineralogical, geochemical and isotopic analyses of the Gebel Qreiya section in the Asyut Basin of central Egypt indicate a depositional environment interrupted by periods of erosion due to local tectonic activity exacerbated by eustatic sea-level fluctuations, and by high-stress environmental conditions akin to those normally experienced during the Cretaceous-Tertiary boundary transition. During the late Maastrichtian (66.8-65.4 Ma) this region experienced a breakdown of the biologically mediated surface to bottom gradient of the 13C/12C ratio with planktic N13C values 0.2-0.8x lighter than benthic values. Planktic foraminiferal species diversity was reduced by more than 50%, with faunal assemblages dominated (75-90%) by the opportunistic disaster species Guembelitria cretacea, which alternate with abundance of small, low oxygen-tolerant heterohelicids (Heterohelix navarroensis, H. dentata, H. globulosa). This prolonged breakdown in ocean primary productivity occurred during a time of global climate cooling and sea-level regressions (at 66.8 and 65.5 Ma), though clay mineralogy suggests that locally low seasonality warm, wet, tropical and subtropical conditions prevailed. The high detrital influx suggests that the biologically high-stress environment was primarily linked to the existing shallow shelf conditions in southern Egypt, and possibly to local tectonic activity and restricted circulation. A normal carbon isotope gradient was briefly reestablished during the short climate warming and rising sea level between 65.4 and 65.2 Ma, a time of increased species diversity, peak abundance of rugoglobigerinids and common heterohelicids. During the last 200 000 years of the Maastrichtian, increased precipitation and terrestrial runoff (increased phyllosilicates and kaolinite) and increasing total organic carbon values are associated with Heterohelix-dominated planktic foraminiferal assemblages. The K/T boundary is marked by a red clay layer and Ir anomaly of 5.4 ppb. During the early Danian, planktic foraminiferal populations and stable isotope data indicate that similarly fluctuating high-stress conditions prevailed in central Egypt as elsewhere in the marginal eastern Tethys.  PDF

Journal
Palaeogeography, Palaeoclimatology, Palaeoecology
Volume
187
Issue
1-2
Pages
35 - 60
Date Published
Jan-11-2002
ISSN Number
00310182
Short Title
Palaeogeography, Palaeoclimatology, Palaeoecology